Effects of Auxin on Photosynthetic Pigments and Some Enzyme Activities during Dark-induced Senescence of Tropaeolum Leaves

نویسندگان

  • İLHAMİ KARATAŞ
  • LOKMAN ÖZTÜRK
  • YURDAGÜL ERŞAHİN
  • YENER OKATAN
چکیده

Effects of indole acetic acid (IAA), indole butyric acid (IBA) and naphthalene acetic acid (NAA) were investigated on some physiological parameters in detached leaves of Tropaeolum majus L., during dark-induced senescence. Auxin accelerated the loss of chlorophyll (Chl) and carotenoid content whereas it retarded the loss of protein amount at the end of senescing period in leaves significantly. Auxin (IAA and IBA) decreased meaningfully catalase (CAT; EC 1.11.1.6) activity at the second day of senescencing period but increased it at the end of senescence compared to the control group. On the other hand, peroxidase (POD; EC 1.11.1.7) activity was not changed with auxin application. H2O2 levels in leaves were unstable during senescing period in both treated and control groups however they were higher in treated leaves than the control group at 6 day of experiment. NAA was found to be the most effective auxin on protein and pigment destruction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ویژگی‌های بیوشیمیایی گیاهان آرابیدوپسیس جهش‌یافته ntrc طی پیری القاء ‌شده توسط تاریکی

Abstract Thioredoxins are invoved in redox regulation of many cellular processes. In this study the role of NADP+-Thioredoxin reductase C (NTRC) in the control of leaf senescence was investigated by biochemical characterization of Arabidopsis ntrc mutants. Forty days old wild type and two ntrc mutant lines were incubated either under normal dark-light or continous darkness regimes for 6 days as...

متن کامل

YUCCA6 over-expression demonstrates auxin function in delaying leaf senescence in Arabidopsis thaliana

The Arabidopsis thaliana YUCCA family of flavin monooxygenase proteins catalyses a rate-limiting step in de novo auxin biosynthesis. A YUCCA6 activation mutant, yuc6-1D, has been shown to contain an elevated free IAA level and to display typical high-auxin phenotypes. It is reported here that Arabidopsis plants over-expressing YUCCA6, such as the yuc6-1D activation mutant and 35S:YUC6 transgeni...

متن کامل

مطالعه مولکولی و بیان ژن‏های فتوسنتزی و فرآیند پیری در برگ پرچم و سایر برگ‏ها در گیاه جو

In order to find out the importance of flag leaf in Hordeum vulgare L. cv. Hordea in some physiologic traits and photosynthetic and leaf senescence-related gene expression, a field experiment was carried out in Warwick University Research Farm, UK, in 2003. For more accuracy and statistical comparison of the calculated means, the experiment was carried out in 4 replicates. Random leaf samples w...

متن کامل

Comparative Study on the Effect of Water Stress and Rootstock on Photosynthetic Function in Pistachio (Pistacia vera L.) Trees

The aim of this study is to evaluate the  effects of water deficit stress on chlorophyll fluorescence (CF) characteristics of photosystem II (PSII) and pigment contents in two rootstock seedlings (Pistacia atlantica L. and P. khinjuk L.). Three levels of soil water potential (Ψs) was used, including WWD (-0.05 MPa), MWD (-0.7 MPa) and SWD (-1.5 MPa). It was found that water stress increased the...

متن کامل

Nitric Oxide Deficiency Accelerates Chlorophyll Breakdown and Stability Loss of Thylakoid Membranes during Dark-Induced Leaf Senescence in Arabidopsis

Nitric oxide (NO) has been known to preserve the level of chlorophyll (Chl) during leaf senescence. However, the mechanism by which NO regulates Chl breakdown remains unknown. Here we report that NO negatively regulates the activities of Chl catabolic enzymes during dark-induced leaf senescence. The transcriptional levels of the major enzyme genes involving Chl breakdown pathway except for RED ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010